Using silver nanowire antennas to enhance the conversion efficiency of photoresponsive DNA nanomotors.

نویسندگان

  • Quan Yuan
  • Yunfei Zhang
  • Yan Chen
  • Ruowen Wang
  • Chaoling Du
  • Emir Yasun
  • Weihong Tan
چکیده

Plasmonic near-field coupling can induce the enhancement of photoresponsive processes by metal nanoparticles. Advances in nanostructured metal synthesis and theoretical modeling have kept surface plasmons in the spotlight. Previous efforts have resulted in significant intensity enhancement of organic dyes and quantum dots and increased absorption efficiency of optical materials used in solar cells. Here, we report that silver nanostructures can enhance the conversion efficiency of an interesting type of photosensitive DNA nanomotor through coupling with incorporated azobenzene moieties. Spectral overlap between the azobenzene absorption band and plasmonic resonances of silver nanowires increases light absorption of photon-sensitive DNA motor molecules, leading to 85% close-open conversion efficiency. The experimental results are consistent with our theoretical calculations of the electric field distribution. This enhanced conversion of DNA nanomotors holds promise for the development of new types of molecular nanodevices for light manipulative processes and solar energy harvesting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silver nanowires as receiving-radiating nanoantennas in plasmon-enhanced up-conversion processes.

We demonstrate efficient coupling between plasmons in a single silver nanowire and nanocrystals doped with rare earth ions, α-NaYF4:Er(3+)/Yb(3+). Plasmonic interaction results in a sevenfold increase of the up-converted emission of nanocrystals located in the vicinity of the nanowires as well as much faster luminescence decays. The enhancement of the emission can be precisely controlled by the...

متن کامل

Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires

In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...

متن کامل

Water photolysis with a cross-linked titanium dioxide nanowire anode†

We report efficient water photolysis using a cross-linked TiO2 nanowire anode containing mixed anatase and rutile phases. Under simulated AM 1.5 G illumination, the peak solar energy conversion efficiency is measured to be 1.05%, a new record for TiO2 photoanodes. A photocurrent density as high as 2.6 mA cm 2 is observed when the film thickness is 22 mm. These observations indicate that the hig...

متن کامل

Improved efficiency of hybrid organic photovoltaics by pulsed laser sintering of silver nanowire network transparent electrode.

In this Research Article, we demonstrate pulsed laser processing of a silver nanowire network transparent conductor on top of an otherwise complete solar cell. The macroscopic pulsed laser irradiation serves to sinter nanowire-nanowire junctions on the nanoscale, leading to a much more conductive electrode. We fabricate hybrid silicon/organic heterojunction photovoltaic devices, which have ITO-...

متن کامل

Rainbow radiating single-crystal Ag nanowire nanoantenna.

Optical antennas interface an object with optical radiation and boost the absorption and emission of light by the objects through the antenna modes. It has been much desired to enhance both excitation and emission processes of the quantum emitters as well as to interface multiwavelength channels for many nano-optical applications. Here we report the experimental implementation of an optical ant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 23  شماره 

صفحات  -

تاریخ انتشار 2011